Date: 19/05/2015 14:50:51
From: mollwollfumble
ID: 725320
Subject: Thirty Meter Telescope Detailed Science Case: 2015

http://arxiv.org/ftp/arxiv/papers/1505/1505.01195.pdf

Table of contents:
2. OVERVIEW 2
2.1 The Big Picture……………………………………………………………………………………………..2
2.2 The Big Questions ………………………………………………………………………………………..4
2.3 The Required Tools ………………………………………………………………………………………5
2.3.1 First Light Suite……………………………………………………………………………………….7
2.3.2 First Light Instruments Exposure Time Calculators……………………………………..7
2.3.3 Future Instruments ………………………………………………………………………………….7
2.3.4 Observatory Operations …………………………………………………………………………..8
3. FUNDAMENTAL PHYSICS AND COSMOLOGY 9
3.1 The nature of dark matter ………………………………………………………………………………9
3.1.1 Dwarf galaxy radial mass profiles ……………………………………………………………..9
3.1.2 Dark Matter Substructure ……………………………………………………………………….11
3.1.3 Dark Matter self-interaction cross-section…………………………………………………13
3.1.4 Baryonic power spectrum……………………………………………………………………….14
3.1.5 Dark energy and modified gravity ……………………………………………………………15
3.1.6 Time-delay cosmography……………………………………………………………………….16
3.1.7 Cosmology from clusters of Galaxies ………………………………………………………17
3.1.8 Tests of general relativity………………………………………………………………………..18
3.2 Physics of extreme objects – Neutron Stars …………………………………………………..19
3.3 Variation of Fundamental Physical Constants ………………………………………………..20
4. EARLY UNIVERSE 22
4.1 Early galaxies and cosmic reionization…………………………………………………………..22
4.1.1 Uncovering primordial stellar systems with TMT ……………………………………….23
4.1.2 Detecting the sources of reionization……………………………………………………….25
4.1.3 The process and history of reionization ……………………………………………………26
4.2 Angular sizes and the synergy with JWST and future space missions ………………28
4.3 Gravitational Lensing …………………………………………………………………………………..30
5. GALAXY FORMATION AND THE INTERGALACTIC MEDIUM 32
5.1 The Peak era of galaxy assembly …………………………………………………………………33
5.1.1 TMT and galaxy formation ……………………………………………………………………..33
5.1.2 How does the distribution of dark matter relate to the luminous stars and
gas we see? ……………………………………………………………………………………………………35
5.1.3 The Growth of Stars: Star-Formation Histories, Dust, and Chemical
Evolution…………………………………………………………………………………………………………36
5.1.4 The formation of passive galaxies and the birth of the Hubble Sequence…….37
5.1.5 The Stellar Initial Mass Function, Early Black Holes and the Growth of
Quasars ………………………………………………………………………………………………………….38
5.1.6 The Census of Baryons and the Baryon Cycle………………………………………….40
5.1.7 Spatial dissection of forming galaxies………………………………………………………42
5.1 The Age of Maturity and Quiescence …………………………………………………………….44
5.1.1 Morphological and Kinematic Growth of Galaxies……………………………………..44
5.1.2 Feedback and the Physics of Galaxy Quenching………………………………………51
5.1.3 The Influence of Local and Large-Scale Environment………………………………..52
5.2 The Intergalactic Medium …………………………………………………………………………….57
5.2.1 Background…………………………………………………………………………………………..57
5.2.2 TMT and the IGM ………………………………………………………………………………….58
5.2.3 TMT and the CGM…………………………………………………………………………………60
6. SUPERMASSIVE BLACK HOLES 64
6.1 The Galactic Center black hole: our unique laboratory for up-close study………….66
6.1.1 TMT takes General Relativity tests into an unexplored regime……………………66
6.1.2 How the GC black hole interacts with its unusual environment……………………67
6.1.3 Proper Motions around SMBHs in the Nearest Galaxies ……………………………68
6.2 Dynamical detections and demographics of SMBHs……………………………………….68
6.2.1 Towards a complete census of black holes in nearby galaxies. ………………….69
6.2.2 The most massive black holes in brightest cluster galaxies………………………..70
6.2.3 Intermediate-mass black holes ……………………………………………………………….70
6.2.4 Calibration of the black hole mass scale in active galactic nuclei ………………..71
6.3 Coevolution of supermassive black holes and galaxies; AGN Fueling and
Feedback. ………………………………………………………………………………………………………….72
6.3.1 The cosmic evolution of small and moderate-size SMBHs. ………………………..72
6.3.2 The first generation of accreting MBHs…………………………………………………….73
6.3.3 Feeding and feedback of AGNs………………………………………………………………73
6.3.4 Distinguishing star formation in the host galaxies of AGNs…………………………74
6.3.5 Binary and merging SMBH in the nearby Universe……………………………………75
6.4 Dust and the Structure of the Central Engine………………………………………………….76
6.5 Time variability, probing the structure and processes in the central engine………..78
7. EXPLORATION OF THE MILKY WAY AND NEARBY GALAXIES 79
7.1 Stellar Astrophysics……………………………………………………………………………………..79
7.1.1 Diffusion (sinking) of heavy elements in the outer parts of stars………………….79
7.1.2 Evolution of massive stars with low metallicity: observational probes ………….79
7.1.3 Validation of theoretical scenarios for low-mass star formation at
extremely low metallicity through observations ……………………………………………………80
7.1.4 Astrophysics of rare objects ……………………………………………………………………80
7.1.5 The Initial-Final Mass Relation – Version 2.0 ……………………………………………82
7.2 Binary population:The binary frequency of field stars ……………………………………..82
7.3 Star clusters: formation, evolution, disruption………………………………………………….83
7.3.1 Star cluster formation and evolution and their environmental
dependence…………………………………………………………………………………………………….83
7.3.2 Globular Clusters: their origin and evolution……………………………………………..84
7.3.3 Infrared counterparts of X-ray sources in globular clusters: probing
IMBH candidates ……………………………………………………………………………………………..84
7.4 The First Stars…………………………………………………………………………………………….85
7.4.1 Probing the oldest stars in the Milky Way…………………………………………………85
7.4.2 Mass distribution of first generation of stars ……………………………………………..86
7.5 The structure of the Milky Way and nearby galaxies ……………………………………….86
7.5.1 Dissecting the Galactic halo: ages and metallicities of old, nearby lowmass
stars and white dwarfs……………………………………………………………………………..86
7.5.2 Planetary nebulae as tracers of substructures in nearby galaxies……………….87
7.5.3 Chemical tagging of individual stars and Galactic sub-structures………………..88
7.6 Kinematics and dynamics of the Milky Way and nearby galaxies ……………………..89
7.6.1 Kinematics of the local group ………………………………………………………………….89
7.6.2 Internal dynamics of dwarf-spheroidal galaxies: density profiles of dark
matter halo………………………………………………………………………………………………………90
7.6.3 The mass of the Milky Way …………………………………………………………………….91
7.6.4 Luminosity-metallicity and mass-metallicity relations for dwarf galaxies
beyond the Local group…………………………………………………………………………………….92
7.6.5 Milky Way satellites and dark matter distribution……………………………………….94
7.6.6 Velocity anisotropy of distant Milky Way halo: evidence of accretion
event 95
7.6.7 The Milky Way halo streams and the Galaxy’s gravitational potential ………….96
7.6.8 The Galactic halo formation: is the Milky Way halo formed by disrupting
accreted dwarf galaxies?…………………………………………………………………………………..96
7.7 Cosmic Chemistry……………………………………………………………………………………….98
7.7.1 Nucleosynthesis in stars…………………………………………………………………………98
7.7.2 Li and Big Bang Nucleosynthesis…………………………………………………………….99
7.7.3 C, N, O elements and Be puzzle……………………………………………………………100
7.7.4 Isotopic abundance ratios and the origin of heavy elements …………………….100
7.7.5 Cosmo-chronometry…………………………………………………………………………….101
7.8 Chemical evolution: The Milky Way, Local Group and nearby galaxies……………102
7.8.1 Probing the onset of AGB stars contribution to the Galactic chemical
enrichment using isotopic ratios of Mg………………………………………………………………102
7.8.2 Probing chemical evolution in Local Group dwarf galaxies ……………………….103
7.8.3 Abundance anomalies in Ultra-Faint Dwarf galaxies………………………………..105
7.8.4 Resolved stellar populations as tracers of galaxy evolution………………………106
7.8.5 Reconstructing the star formation histories of nearby galaxies………………….107
7.8.6 Time-resolved history of the galaxies in the Local Volume: the TMT era ……109
7.8.7 Probing LSB and BCD galaxies: star formation, chemical evolution, dark
matter 110
7.8.8 Resolving Extreme Star Formation Environments in Luminous Infrared
Galaxies at Low Redshift…………………………………………………………………………………111
8. THE BIRTH AND EARLY LIVES OF STARS AND PLANETS 113
8.1 Star formation……………………………………………………………………………………………113
8.2 Developing a predictive theory of star formation……………………………………………113
8.2.1 IMF vs. environment…………………………………………………………………………….113
8.2.2 Kinematic evolution ……………………………………………………………………………..115
8.2.3 Multiplicity …………………………………………………………………………………………..116
8.3 Star formation at the extreme ends of the mass function ……………………………….117
8.3.1 Formation of high-mass stars………………………………………………………………..117
8.3.2 Formation of brown dwarfs and planetary-mass objects…………………………..117
8.4 Young planet-forming disks ………………………………………………………………………..119
8.5 Conditions for planet formation……………………………………………………………………120
8.5.1 Planet formation vs. host star properties ………………………………………………..120
8.5.2 Gas dissipation timescale of protoplanetary disks……………………………………121
8.6 Planet-disk interaction………………………………………………………………………………..121
8.6.1 Disk structure by planets ………………………………………………………………………121
8.7 Growth of planets………………………………………………………………………………………123
8.8 Mapping the pre-biotic landscape in proto-planetary disks……………………………..124
8.8.1 Snow line and beyond………………………………………………………………………….124
8.8.2 Formation and evolution of pre-biotic molecules ……………………………………..125
9. TIME-DOMAIN SCIENCE 127
9.1 Understanding the Nature of Type Ia Supernovae ………………………………………..128
9.1.1 Characterizing high-z Type Ia Supernovae: Towards a Better Standard
Candle128
9.1.2 Unveiling The Explosion Mechanism of Type Ia Supernovae……………………130
9.2 Identifying The Shock Breakout of Core-Collapse Supernovae ………………………130
9.3 Tracing the high-z Universe with Supernovae ………………………………………………131
9.4 Characterizing the Circumstellar environment around Supernovae – Clues to
the Identity of the Progenitor Systems …………………………………………………………………132
9.5 Identification and Investigation of Gravitational-Wave Sources……………………….133
9.6 Understanding Progenitors of Gamma-ray Bursts: Connection to
Supernovae and Kilonovae ………………………………………………………………………………..134
9.7 Probing The High-z Universe with Gamma-ray Bursts …………………………………..135
9.8 Studying Tidal Disruption Events and Supermassive Black Holes…………………..135
9.9 Time domain studies of AGN and Blazar Variability ………………………………………137
9.10 Cataclysmic Variables………………………………………………………………………………138
9.10.1 Investigating the Dissipative Process in Cataclysmic Variable
Accretion Discs and Disc Evolution During Outburst Cycles………………………………..138
9.10.2 Revealing the Geometry and Populations of Classical Novae…………………139
9.11 Improving the Hubble Constant and Measuring Extragalactic Distances………..141
9.12 Summary of Requirements……………………………………………………………………….142
10. EXOPLANETS 145
10.1 Doppler detection of planetary systems ……………………………………………………..145
10.1.1 TMT’s role in Doppler studies of exoplanets………………………………………….147
10.1.2 Landscape in 2022…………………………………………………………………………….148
10.1.3 Limits to Doppler studies due to stellar activity………………………………………149
10.2 Direct detection and characterization of exoplanets …………………………………….149
10.2.1 Landscape in the 2020s ……………………………………………………………………..152
10.2.2 Exoplanet Imaging at First-Light with NFIRAOS and IRIS of Young
Gas-Giants ……………………………………………………………………………………………………155
10.2.3 Exoplanet Imaging with TMT ExAO: Rocky Planets and Planetesimals …..156
10.3 Transiting exoplanets……………………………………………………………………………….159
10.3.1 Landscape in 2022…………………………………………………………………………….159
10.3.2 Transit photometry and low-dispersion spectroscopy …………………………….160
10.3.3 High-dispersion spectroscopy……………………………………………………………..161
10.3.4 Characterization of transit planet hosts…………………………………………………162
10.4 Gravitational Microlensing ………………………………………………………………………..162
10.4.1 Landscape in 2022…………………………………………………………………………….163
10.4.2 TMT Microlensing Science………………………………………………………………….163
11. OUR SOLAR SYSTEM 165
11.1 Primitive bodies……………………………………………………………………………………….165
11.1.1 Asteroids…………………………………………………………………………………………..165
11.1.2 Active Asteroids…………………………………………………………………………………165
11.1.3 Asteroid Satellites………………………………………………………………………………165
11.1.4 Physical properties of the outer-belt asteroids……………………………………….166
11.1.5 Kuiper belt objects……………………………………………………………………………..166
11.1.6 Centaurs …………………………………………………………………………………………..167
11.1.7 Comets …………………………………………………………………………………………….167
11.1.8 Source of Planetary Volatiles ………………………………………………………………168
11.2 Giant Planets…………………………………………………………………………………………..169
11.2.1 Introduction……………………………………………………………………………………….169
11.2.2 Vortices and thermal waves ………………………………………………………………..169
11.2.3 Planetary Seismology from Impacts on giant planets……………………………..170
11.2.4 Source of internal heat in Uranus & Neptune ………………………………………..170
11.3 Rocky planets and Moons ………………………………………………………………………..171
11.3.1 Titan…………………………………………………………………………………………………171
11.3.2 Planetary atmospheres ………………………………………………………………………171
11.3.3 Volcanism (Io)……………………………………………………………………………………173

Reply Quote