http://www.space.com/37071-new-horizons-flyby-target-occultations.html
The team behind NASA’s New Horizons mission is about to get some good looks at the Pluto probe’s next flyby target, if everything goes according to plan.
New Horizons is speeding toward a Jan. 1, 2019, close encounter with a small object called 2014 MU69, which lies about 1 billion miles (1.6 billion kilometers) beyond the orbit of Pluto.
On Saturday (June 3), 2014 MU69 will cross in front of a distant star in an “occultation” visible from a narrow band of land and sea in the Southern Hemisphere. Stellar occultations can reveal key details about the light-blocking foreground body, so New Horizons team members have deployed to Argentina and South Africa to watch the show.
“Our primary objective is to determine if there are hazards near MU69 — rings, dust or even satellites — that could affect our flight planning,” New Horizons principal investigator Alan Stern, of the Southwest Research Institute (SwRI) in Boulder, Colorado, said in a statement.
“But we also expect to learn more about its orbit, and possibly determine its size and shape,” Stern added. “All of that will help feed our flyby planning effort.”
Astronomers have not been able to nail down 2014 MU69’s precise orbit yet; as its name suggests, the object was discovered just three years ago. So the New Horizons team used images of MU69 taken by NASA’s Hubble Space Telescope and star-mapping data from Europe’s Gaia mission to determine where MU69’s shadow will fall on Earth on Saturday.
The researchers have access to more than two dozen fixed-base telescopes along this projected shadow path. And they brought along 25 portable telescopes, 22 of which are new, 16-inch (40 centimeters) instruments, mission team members said.
The team will space out the telescopes, placing one every 6 to 18 miles (10 to 29 km) along the path. This strategy will increase the chances that at least one instrument will get a good enough look at the 2-second-long occultation to help researchers determine MU69’s size, reflectivity and other key characteristics, team members said. (2014 MU69 is thought to be about 25 miles, or 40 km, across.)
“Deploying on two different continents also maximizes our chances of having good weather,” New Horizons deputy project scientist Cathy Olkin, also from SwRI, said in the same statement. “The shadow is predicted to go across both locations, and we want observers at both, because we wouldn’t want a huge storm system to come through and cloud us out — the event is too important and too fleeting to miss.”
