http://icecube.wisc.edu/news/view/564
With better and larger neutrino telescopes in the horizon, researchers are now designing more efficient analysis techniques that will boost our understanding of neutrinos and advance searches for new physics including additional neutrino flavors or new interactions. These techniques not only provide more accurate and robust results, but also reduce expenses and time in computation that could limit improvements in the design of new detectors or the discovery potential of existing facilities.
Nature provides huge numbers of neutrinos and, thanks to its denser infill array DeepCore, IceCube can now perform very precise measurements of the neutrinos interacting near or in the detector. Future extensions of IceCube, known as IceCube-Gen2, as well as other neutrino telescopes in water will push these measurements to the next level of accuracy.
IceCube researchers present in the paper now on arXiv reduce the amount of simulation computation by dividing the production into four phases or stages: i) theoretical predictions of nonoscillated neutrinos; ii) adding oscillation effects, which change the flavor content of the sample; iii) integrating the effects of the detector, i.e., taking into account the probability that a given neutrino interacts in or near the detector and is later selected as an interesting event for a specific analysis; and iv) reconstruction, i.e., the transformation of raw data into the physical properties of the events.
The trick is in calculating and applying the physics and detector effects not on each individual event, but on groups of events that have similar enough properties.
The following image explains “deep core”. Pushing the measurement region all the way down to bedrock.


